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Abstract— The use of Gene Ontology (GO) data in protein
analyses have largely contributed to the improved outcomes of
these analyses. Several GO semantic similarity measures have
been proposed in recent years and provide tools that allow
the integration of biological knowledge embedded in the GO
structure into different biological analyses. There is a need for
a unified tool that provides the scientific community with the
opportunity to explore these different GO similarity measure
approaches and their biological applications. We have developed
DaGO-Fun, an online tool available at http://web.cbio.
uct.ac.za/ITGOM, which incorporates many different GO
similarity measures for exploring, analyzing and comparing GO
terms and proteins within the context of GO. It uses GO data
and UniProt proteins with their GO annotations as provided
by the Gene Ontology Annotation (GOA) project to precompute
GO term information content (IC), enabling rapid response to
user queries. The DaGO-Fun online tool presents the advantage
of integrating all the relevant IC-based GO similarity measures,
including topology- and annotation-based approaches to facilitate
effective exploration of these measures, thus enabling users to
choose the most relevant approach for their application. Further-
more, this tool includes several biological applications related to
GO semantic similarity scores, including the retrieval of genes
based on their GO annotations, the clustering of functionally
related genes within a set, and term enrichment analysis.

BACKGROUND

During the last decade several Gene Ontology (GO) se-
mantic similarity approaches [1]–[10] have been introduced
for assessing the specificity of and relationship between GO
terms based on their position in the GO Directed Acyclic
Graph (DAG) [11]–[13]. Terms in the GO DAG are seman-
tically and topologically linked by the relations ‘isa’ and
‘part of’, expressing relations between a given child term and
its parents. Semantic similarity approaches are based on these
relations between terms and enable efficient exploitation of
the enormous corpus of biological knowledge embedded in
the GO DAG by comparing GO terms and proteins at the
functional level. GO semantic similarity measures have been
widely used in different contexts of protein analysis, including
gene clustering, gene expression data analysis, prediction
and validation of molecular interactions, and disease gene
prioritization [9], [14].
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Initially, path- or edge-based approaches, which use a dis-
tance or the number of edges between terms in the ontology
structure, were introduced [15], [16]. For these approaches,
the similarity score between two terms is proportional to the
number of edges on the shortest path between these two terms.
Path-based approaches were criticized for being limited to
edge counting, ignoring positions of terms in the structure
and producing uniform similarity scores [9]. Thus, information
content based approaches, which rely on a numerical value to
convey the description and specificity of a GO term using its
position in the structure, were introduced [1]. This numerical
value is called information content (IC) or semantic value,and
depending on the conception of the term IC, these approaches
are divided into two main families, annotation-based and
topology-based families. Those depending only on the intrinsic
topology of the GO structure are referred to as topology-based
approaches while those using the frequencies at which terms
occur in the corpus under consideration are referred to as
annotation-based approaches.

Annotation-based approaches have been widely analyzed,
deployed in many biological applications and were shown to
outperform path-based models [17]. Most of them are adapted
from Resnik [18], Lin [19] or Jiang & Conrath’s [20] methods,
and are referred to as classical IC-based similarity approaches.
These classical approaches use the most informative common
ancestor (MICA) between terms to assess their semantic
similarity. Beyond these classical approaches, several other IC-
based GO semantic similarity approaches and enhancements
have been suggested in order to improve annotation-based
measures. These include the graph-based similarity measure
(GraSM), developed by Couto et al. [7], which uses all the dis-
junctive common ancestors (DCA) instead of MICA, the rele-
vance similarity approach proposed by Schlicker et al. [4],and
the information coefficient idea of Li et al. [10] to correct the
overestimation of similarity scores in Lin’s metric. However,
the reliance of these approaches on the annotation statistics
of the terms biases the scores produced [21]. Topology-based
approaches, including the GO-universal metric [22], and the
Zhang et al. [3] and Wang et al. [5] methods, were proposed
to remove the effect of annotation dependence.

The main use of GO semantic similarity measures is the
computation of protein semantic similarity or functional sim-
ilarity between proteins based on their GO annotations. The
completion of several genome sequencing projects has gener-
ated immense quantities of sequence data. Subsequently, with



the continuous development of new high-throughput methods
the amount of functional data has increased dramatically, justi-
fying the development of dedicated methods and tools that help
extract information from these data. GO [11] has successfully
provided a way of consistently describing genes and proteins
and a well adapted platform to computationally process dataat
the functional level. Protein functional similarity methods are
counted among tools that allow integration of the biological
knowledge contained in the GO DAG, and have contributed
to the improvement of biological analyses [17]. These protein
functional similarity measures have been used in several
applications, including microarray data analysis [23], protein-
protein interaction assessments [17], clustering and identi-
fication of functional modules in protein-protein interaction
networks [24], and putative disease gene identification [25].

As well as different GO semantic similarities, several func-
tional similarity approaches have been proposed. Some of
them depend directly on the GO term IC, referred to as Direct
Term- or graph-based approaches, and others are constructed
via computation of GO term semantic similarity measures,
referred to as Term Semantic-based approaches. The former in-
cludes approaches derived from the Jaccard, Dice and univer-
sal indices based on the Tversky ratio model of similarity [26],
referred to as SimGIC [8], [27], SimDIC and SimUIC [22], re-
spectively. The latter approach includes the average (Avg)[1],
best-match average (BMA) [8], [22], average best matches
(ABM) [5], [24], and the maximum (Max) [2] combinations of
GO term similarities for calculating protein functional similar-
ities where proteins are annotated to multiple GO terms. The
recent proliferation of these measures in the biomedical and
bioinformatics areas was accompanied by the development of
tools (http://www.geneontology.org/GO.tools_
by_type.semantic_similarity.shtml) that facili-
tate effective exploration of these measures.

These tools include software packages and web-based on-
line tools. Most of the software packages are implemented in
the R programming language [28], [29], among which we have
SemSim [30], GOSim [31], and csbl.go [23]. There are also
online tools, such as ProteInOn [32] and G-SESAME [33].
In addition, an integrated online tool exists, the Collaborative
Evaluation of Semantic Similarity Measures (CESSM) [34],
for automated evaluation of GO-based semantic similarity
approaches, enabling the comparison of new measures against
previously published annotation-based GO similarity mea-
sures. Evaluation is done in terms of performance with respect
to sequence, Pfam and EC similarity. Note that most of the
online tools do not support topology-based approaches. The
G-SESAME online tool, designed by Du et al. [33] in the
context of the Wang et al. approach, supports only classical
Resnik [18], Jiang & Conrath [20], and Lin [19] similarity
measures for protein or gene clustering applications.

The appropriate use of functional similarity measures de-
pends on the applications [9], [24] since the measures perform
differently for different applications. A given measure can
yield good performance for one application, but performs
poorly for another. Numerous online tools have been devel-

oped, but to the best of our knowledge there is no single tool
that exhaustively integrates the IC-based functional similarity
metrics in order to provide researchers with the freedom to
choose the most relevant approach for their specific applica-
tions. Here, this is solved through the DaGO-Fun online tool,
which integrates up to 27 functional similarity measures, in-
cluding topology- and annotation-based approaches. This tool
also includes some important biological applications directly
linked to the use of GO semantic similarity measures, namely
the identification of genes based on their GO annotations, the
clustering of functionally related genes within a set, and GO
term enrichment analysis.

I. M ETHODS

The DaGO-Fun tool integrates GO IC-based semantic sim-
ilarity measures, allowing researchers to explore and choose
an appropriate measure for their analysis. The resulting GO
similarity scores are retrieved from the DaGO-Fun database
implemented using MySQL and accessible via a web interface.
The whole system is implemented using a LAMP (Linux-
Apache-MySQL and PHP/Python) platform. This means that
the DaGO-Fun tool is implemented under free software (GNU
General Public Licence) using a Linux Apache server with a
database structured in a relational model using MySQL, with
the web interface implemented in PHP-HTML.

The back-end is composed of a set of query processing
programs implemented in Python. The user input data are
GO terms or UniProt proteins [35]–[37] and their GO annota-
tions from the GOA project [38]–[41]. The database contains
about2 × 107 proteins with GO annotations and38 877 GO
terms (25 178 biological process,10 426 molecular function
and 3 273 cellular component terms) from the GO database.
The current version of DaGO-Fun uses UniProt and GOA-
UniProtKB release 2013-01 of Jan 9, 2013 and GO version
1.3499 downloaded on 19-January-2013. The database will be
updated using an automated scheme every three months.

A. IC-based GO Semantic Similarity Measures

We have implemented two main families of IC-based GO
semantic similarity measures: annotation and topology-based
families. The annotation-based methods are constrained by
the annotation statistics related to terms, while topology-
based measures use the intrinsic topology of the GO DAG.
In terms of GO term IC, the DaGO-Fun tool includes both
families and for the topology-based family, the tool imple-
ments three approaches; Zhang et al. [3], Wang et al. [5]
and the GO-universal approach [22]. These topology-based
family measures each has a specific scheme for computing GO
term semantic similarity and functional similarity scores. The
annotation-based family has been widely studied and several
GO term semantic similarity and protein functional similarity
approaches have been introduced.

The GO term semantic similarity approaches include tra-
ditional Resnik and Lin measures and two approaches that
have been suggested to improve the performance of the Lin
measure, namely Relevance (SimRel) [4] and Information



Coefficient (SimIC) [10] similarity measures. Note that in the
DaGO-Fun tool, the Jiang & Conrath similarity approach is
under the Lin approach label as it is just the non normalized
distance derived from the Lin similarity measure. Furthermore,
all other normalization schemes that have been proposed have
failed to improve the performance of this approach [8]. For
similarity measures which are not normalized or whose values
do not range between 0 and 1, we have normalized them using
the uniformized information content [8], [21], [24], to enable
users to compare these data. A value close to one indicates
high similarity and close to zero indicates low similarity
between proteins at the functional level.

These annotation-based GO term similarity approaches are
combined using statistical measures of closeness, such as
average (Avg), maximum (Max), best-match average (BMA)
and averaging all the best matches (ABM) for calculating
protein functional similarity scores. The difference between
ABM and BMA approaches is subtle in their conception and
scores produced by these two approaches differ. The ABM [5],
[24] for two annotated proteins is the mean of best matches
of GO terms of each protein against the other, given by the
following formula:
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1
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The Best Match Average (BMA) [8], [22] for two annotated
proteinsp and q is the mean of the following two values:
average of best matches of GO terms annotated to protein
p against those annotated to proteinq, and average of best
matches of GO terms annotated to proteinq against those
annotated to proteinp, given by the following formula:
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In equations (1) and (2),S (s, t) is the semantic similarity
score between termss and t, TX

r is a set of GO terms inX
representing the molecular function (MF), biological process
(BP) or cellular component (CC) ontology annotating a given
proteinr andn =
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∣ are the number of GO
terms in these sets. These two approaches produce different
scores and they are equal only whenn = m, which is not
often the case in a set of annotated genes or proteins.
A well known issue with all these statistical measures of
closeness is that they are sensitive to scores that lie at abnormal
distances from the majority of scores, or outliers. This means
that these measures may produce biases which affect protein
functional similarity scores [22]. The functional similarity
approach, SimGIC [8], [27], which uses the IC of terms
directly to compute protein functional similarity from their
GO annotations, was introduced, and uses the Jaccard index.
The DaGO-Fun tool also supports two other protein similarity
measures relying on GO term IC [22]: SimDIC (Czekanowski
or Lin like measure), which uses the Dice index, and SimUIC,

which uses a universal index, given by the following formula:
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whereAX
r is a set of GO terms together with their ancestors

in X representing the ontology (MF, BP or CC) annotating a
given proteinr. Note that these two measures are still to be
evaluated and compared to the existing functional similarity
measures.

The DaGO-Fun tool implements 27 functional similarity
measures (see Table 1). Each of the four annotation-based GO
term similarity approaches, namely Resnik, Lin, relevanceand
Li et al., is implemented with four known IC-based non-direct
functional similarity measures (Avg, Max, BMA and ABM).
DaGO-Fun also includes the three IC-based direct term func-
tional similarity measures; SimGIC, SimDIC and SimUIC). It
implements XGraSM (eXtended GraSM) in which, instead of
considering only the disjunctive common ancestors (DCA), as
is the case for the original GraSM, all informative common
ancestors (ICA) are considered when computing semantic sim-
ilarity between two different GO terms and the score between
a term and itself is set to1. This XGraSM approach has been
shown to outperform the GraSM approach [21]. Note that find-
ing the disjunctive common ancestors (DCA) between two GO
terms makes the original GraSM approach computationally
unattractive. Unfortunately, this computational complexity is
not proportional to the improvement in performance, and thus,
this approach is not included in the DaGO-Fun tool.

On the topology-based approaches, the DaGO-Fun tool
implements each approach with its associated functional simi-
larity measure as suggested by the authors of the approach
(shown in Figure 1). Thus, the GO-universal approach is
implemented with the best match average (BMA) and the
Wang et al. approach uses the average best matches (ABM).
For the Zhang et al. approach, the DaGO-Fun tool uses
averaging best matches (ABM) as it has been shown to
improve the performance of this approach [24]. The SimUI
approach refers to the union-intersection protein similarity
measure, which is also implemented in the GOstats package
of Bioconductor [31]. It is a particular case of SimGIC (using
the Jaccard index) which assumes that all GO terms occur at
equal frequency, in which case, only the topology of the GO
DAG is needed [22].

B. Implementation of the DaGO-Fun tool

Protein annotations were retrieved from GOA-UniProtKB
at http://www.ebi.ac.uk/GOA using UniProt protein



TABLE I: Different GO term semantic similarity approaches and functional similarity measures implemented in DaGO-Fun.
The letter ‘x’ indicates that the relevant approach is implemented in DaGO-Fun with the corresponding functional similarity
measure.

Functional Similarity Measures
Direct Term-based Term Semantic-based

Approaches SimGIC SimDIC SimUIC SimUI BMA ABM Avg Max
Annotation-based x x x

XGraSM x x x x
Resnik x x x x
Lin x x x x
Li et al. x x x x
Relevance x x x x

Topology-based x
Zhang et al x
Wang et al. x
GO-universal x

AVG MAXBMA ABM

GO−Universal Zhang et al. Wang et al

Topology−based

Li et al.
Relevance andLin−relatedResnik−related

Annotation−based

SimDICSimGIC SimUISimUIC

IC−Based

Approach

Term Semantic−based Functional

Similarity

Measure

Model

Family

XGraSM

Protein Functional similarity

Term semantic similarity

Direct term−based Functional
Similarity

Fig. 1: Flowchart of all GO measures implemented in DaGO-Fun.The solid line indicates that the performance of a given
measure has already been assessed and the dashed line standsfor measures or approaches that have to be evaluated.

accession (ID), gene name and description. GO term topo-
logical features (term parents and level) were extracted from
the GO database. These data are integrated into a MySQL
database of biological concepts present in DaGO-Fun, and
used to produce GO term IC, GO term semantic similarity and
protein functional similarity scores. The GO term IC scores
are integrated into the precompiled dictionaries in the DaGO-
Fun tool. The tool is based on a client-server model and is
accessible athttp://web.cbio.uct.ac.za/ITGOM by
any user with a standard web browser. The user interface in
DaGO-Fun allows easy and comprehensive navigation, query
and exploration of GO term, protein semantic similarity scores,
and includes biological applications, as shown in Figure 2.
This web interface allows the user to input queries in two main
dynamic and customizable steps from the search to the user

input options before submitting an application for processing.
1) Setting parameters step:The DaGO-Fun tool provides a

comprehensive searching scheme. The user selects the task to
be processed, which includes the ontology (Biological Process,
Molecular Function or Cellular Component) under considera-
tion, and chooses the GO semantic similarity measure family
(annotation or topology-based). After this, he/she can select
one from a list of available models, which is restricted accord-
ing to the selected family. Finally, some additional options are
available only when dealing with proteins, depending on the
user’s choices. If the user selects the annotation-based family
then more information is requested about the class (direct IC
or non direct IC) of the approach selected and how the IC or
GO term similarity scores should be combined. The engine
changes further steps to guide the user’s choices by only
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Fig. 2: The DaGO-Fun system architecture.The user selects the application and enters the input (GO Ids, Protein Accessions
or Gene names, GO Id pairs and protein or gene name pairs). Theapplication is processed from the DaGO-Fun system and
results are displayed in a comprehensive format for visualization.

making available the options relevant to the current choice.

2) User Input step:After selecting appropriate parameters,
the user enters their queries in a text area or from a file,
and the size of the input allowed depends on the applications.
Note that the DaGO-Fun tool currently includes four applica-
tions, namely: Term and protein semantic similarity measures
(IT-GOM), Protein Fuzzy-Identification (GOSP-FIT), Term

Fuzzy-Enrichment Analysis (GOSS-FEAT) and Protein Fuzzy-
Classification (GOSP-FCT). Here, the fuzzy concept is related
to the fact that the results or outputs of a given query are a
function of a certain agreement score or level.

• For IT-GOM at http://web.cbio.uct.ac.za/
ITGOM/tools/itgom.php: up to 3000 pairs of GO
Ids, UniProt protein accessions or gene names can be



submitted for GO term similarity and functional similarity
querying. For GO term IC, the user can enter up to 5000
GO Ids.

• A list of at most 20 GO Ids belonging to the same
GO ontology is recommended when using GOSP-
FIT at http://web.cbio.uct.ac.za/ITGOM/
tools/gotspfit.php.

• For GOSS-FEAT athttp://web.cbio.uct.ac.
za/ITGOM/tools/gossfeat.php: a target list of
at most 2000 protein UniProt accessions or gene names
is recommended.

• Finally, a list of no more than 200 protein UniProt
accessions or gene names is recommended for GOSP-
FCT at http://web.cbio.uct.ac.za/ITGOM/
tools/gospfuct.php.

These cut-offs are mainly due to the limitations of the compu-
tational resources available but also to the visualizationcon-
straints and algorithm complexity, for example when running
hierarchical clustering in GOSP-FCT.

3) Outputs: Comprehensive summary reports generated
from the DaGO-Fun tool are made available in table format.
An example of a result report is shown in Figure 3 and
this report can be downloaded as a tab-delimited text file
or printed. Users can query specific links directly, leading
to the reported GO terms or proteins. Note that proteins
are linked to their annotations via QuickGO at EBI (http:
//www.ebi.ac.uk/QuickGO), and for GO term semantic
similarity and information content queries, GO Ids are linked
to their characteristics and their sub-GO graphs displayed
using AmiGO athttp://amigo.geneontology.org.
A given concept (protein accession or GO Id) can also be
linked to more detailed results related to the concept. More
details on the use of the tool are provided in the help page on
the website.

C. GO term statistics

The DaGO-Fun tool uses binomial test for the retrieval of
genes based of their GO annotations (GOSP-FIT) and hyper-
geometric test for term enrichment analysis (GOSS-FEAT),
adjusted using the Bonferroni multiple testing correction. Note
that using the hyper-geometric distribution, the p-value,which
is the probability of observing at leastℓ genes from a target
gene set of sizen by chance, knowing that the reference
dataset, considered as a background distribution, contains m

such annotated genes out of N genes is given by the following
formula:

P [X ≥ ℓ] = 1−

ℓ−1
∑

k=0

(

m

k

)(

N −m

n− k

)

(

N

n

) (5)

The random variable X represents the number of genes within
a given target gene subset, annotated with a given GO term.
Note that we are dealing with very large population size
(organism’s genome, proteome or set of annotated proteins
in the GOA file), in which case the size of the target gene or

protein subset is very small compared to the population size.
Thus, the p-value can also be approximated by or modeled
using the binomial distribution [42] by taking the relative
frequency of occurrence of each GO term in the reference
dataset as an estimator of the probabilityp of observing the GO
term under consideration. In this case, a gene taken at random
from the reference dataset is an event with two possible
outcomes, namely success (1), if the gene is annotated with the
GO term, and failure (0) otherwise. Thus, the probability of
obtaining at leastℓ successes inn trials or observing at leastℓ
genes annotated with the GO term under consideration among
n genes in the target set is given by the following formula:

P [X ≥ ℓ] = 1−

ℓ−1
∑

k=0

(

n

k

)

pk (1− p)
n−k (6)

In these cases, the lower the p-value, the less likely it is that the
observed frequency of the term is due to chance, and thus the
more meaningful the term is in the target gene set. Thus, GO
terms in the dataset under consideration can be ranked based
on their p-values using the fact that the lower the p-value, the
more significant the observed GO term is.

Note that as the biological applications implemented depend
on the agreement level, the frequency of occurrence of a term
through a gene or proteing is in fact fuzzy-frequency of this
term modeled using GO similarity scoreAg, of the term to the
set of GO terms annotating the gene, given by the following
formula:

Ag (t) = S
(

t, TX
g

)

(7)

TX
g is a set of GO terms in the ontologyX annotating the

gene g andS
(

t, TX
g

)

= max
{

S (t, s) : s ∈ TX
g

}

[22], with
S (t, s) representing the semantic similarity score between GO
termst and s. We say the geneg is not annotated witht or
t does not occur through the geneg if Ag (t) = 0, g is fully
annotated witht or t fully occurs ifAg (t) = 1 andg is fuzzy
annotated witht or t fuzzy occurs if0 < Ag (t) < 1. Thus,
the fuzzy occurrence of a given term induces the possibility
of a term occurrence through a given protein in the annotation
data under consideration. Specifically, the fuzzy frequency of
occurrence of the GO termt in a set of genesC from a given
experiment, denotedff (t), is calculated using the following
formula:

ff (t) =
∑

g∈C

δg (t) (8)

whereδg is theg−function indicator given by

δg (t) =

{

1 if Ag (t) ≥ c

0 otherwise

c > 0 is the agreement level or customized agreement at which
the GO termt is considered to be a possible annotation of the
geneg. The value ofc = 0.3 is considered to be a default value
of the agreement level, and its associated fuzzy frequency is
referred to as realistic or moderate frequency. This is strong
or high frequency ifc = 0.7 and perfect frequency ifc = 1,
which corresponds to the traditional approaches.



Fig. 3: Application example of querying IT-GOM and an output summary. The left figure shows the DaGO-Fun interface
providing the query form with user input data and the figure onthe right displays the results table of protein similarity scores
produced by the selected algorithm.

TABLE II: Results obtained after running the GOSP-FIT for specific GO Ids and using different GO term semantic similarity
approaches, namely GO-universal (GA), Wang et al (WA), Zhang et al. (ZA), Resnik (RA), Lin (LA) and Li et al. (LLA).

Number of proteins detected
GO ID Level GO Name GA WA ZA RA LA LLA p-value Corrected p-value

GO:0044255 4 cellular lipid metabolic process 154 1590 1907 225 1652 1286 0.00e+00 0.00e+00
GO:0071236 6 cellular response to antibiotic 123 307 545 277739 588 2.42e-14 9.68e-14
GO:0051409 3 response to nitrosative stress 91 226 426 243 435 418 1.07e-14 4.26e-14
GO:0052099 6 acquisition by symbiont of nutrients 47 128 463 2 418 269 2.75e-14 1.10e-13

from host via siderophores

II. RESULTS AND DISCUSSION

In this section we provide and discuss briefly some il-
lustrations of biological applications included in the DaGO-
Fun tool, namely GO Term Similarity based Protein-Fuzzy
Identification Tool (GOSP-FIT), GO based Similarity Protein-
Fuzzy Classification Tool (GOSP-FCT) and GO Semantic
Similarity based-Fuzzy Enrichment Analysis Tool (GOSS-
FEAT). We ran these applications on theMycobacterium
tuberculosis (MTB) genome using different GO semantic
similarity approaches and analyzed the results obtained. MTB
is an intracellular pathogen that causes tuberculosis (TB),
one of the most threatening infectious diseases considering
the severity of its impact on human populations [43]. To be
successful, MTB must, at each step of the infection, expressa
set of genes that enables it to survive and persist inside itshost
macrophages, defeating antibacterial mechanisms of host cells
and evading the antibiotic actions of drugs. Thus, it is believed
that besides some basic biological processes, these genes or
proteins must be involved in critical biological processes,
such asresponse to nitrosative stress(GO:0051409),cellular
response to antibiotic(GO:0071236),acquisition by symbiont
of nutrients from host via siderophores(GO:0052099),cellular
lipid metabolic process(GO:0044255), etc. We used these GO
biological process terms as initial data or input for running

different biological applications in the DaGO-Fun tool at
moderate agreement, unless otherwise stated.

A. Performing DaGO-Fun applications

Using the biological process terms listed above, we ran
GOSP-FIT to identify proteins involved in a process similarto
the input processes, using the GO-universal metric, Wang et
al., Zhang et al, Resnik, Lin and Lin with Li et al. enhancement
similarity measures. Results are shown in Table 2. We see
that, except for GO-universal and Resnik approaches, other
approaches tend to select more proteins for a given term.
This is an indication that these approaches are overestimating
GO term similarity scores. It is already known that the Lin
approach overestimates similarity scores between terms, which
is why the enhancement of this measure has been suggested
through the information coefficient idea of Li et al. [10] and
the relevance similarity approach proposed by Schlicker et
al. [4] to correct these overestimated scores. From the number
of proteins detected by Lin and its enhancement proposed
by Li et al., we observe that this enhancement is trying
to reduce the impact of Lin similarity score overestimation
even though overall these measures are still overestimating
similarity scores. Finally, note that one can display all proteins
identified for a given term by selecting the row of the term
and clicking on the ‘Continue’ button.



Before running other applications, we first identified in
the MTB genome all genes or proteins involved in the GO
annotations under consideration. A total of 23 proteins have
been identified with 18 proteins (O53594, P66807, P0A696,
P0A5L0, Q10630, P72001, P96853, O06239, P65688, P64943,
O50429, P66952, P63345, P96237, P67422, Q7BHK8,

P0A5B7, P71971) for GO:00051409, one protein (P65720)
for GO:0071236, 2 (P65734, O53207) for GO:0044255, and 2
(P63391, P63393) for GO:0052099. We used these proteins as
input data for running GOSP-FCT using hierarchical clustering
under the customized agreement level. Results are depicted
in Figure 4 and indicate that the clustering outcome depends
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(b) Using Wang et al. approach.
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(c) Using Resnik approach.
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(d) Using Li et al. approach.

Fig. 4: Clustering results obtained by running the hierarchical clustering program using different similarity metrics
under the DaGO-Fun tool. Protein label is colored according to the process in which the protein is involved. Magenta for
proteins involved in GO:00051409, blue for GO:0071236, green for GO:0044255 and red for GO:0052099.



TABLE III: Running the GOSS-FEAT for specific GO Ids and usingdifferent GO term semantic similarity approaches.

Approach GO-ID GO Name Level Reference Fuzzy Target Fuzzy p-value Corrected
Frequency Frequency p-value

GO-Universal GO:0051409 response to nitrosative stress 3 91 18 0.00e+00 0.00e+00
GO:0006979 response to oxidative stress 3 90 18 8.08e-13 5.17e-11
GO:0052572 response to host immune response 7 92 8 1.16e-07 7.45e-06

Wang et al. GO:0006979 response to oxidative stress 3 226 18 0.00e+00 0.00e+00
GO:0046677 response to antibiotic 4 164 18 0.00e+00 0.00e+00
GO:0001666 response to hypoxia 5 163 18 0.00e+00 0.00e+00
GO:0006974 response to DNA damage stimulus 5 419 18 0.00e+00 0.00e+00
GO:0009432 SOS response 5 316 18 0.00e+00 0.00e+00
GO:0034605 cellular response to heat 5 351 18 0.00e+00 0.00e+00
GO:0071500 cellular response to nitrosative stress 5 365 18 0.00e+00 0.00e+00
GO:0075136 response to host 5 293 12 9.10e-08 5.82e-06

Resnik GO:0009432 SOS response 5 294 18 0.00e+00 0.00e+00
GO:0034605 cellular response to heat 5 296 18 0.00e+00 0.00e+00
GO:0071500 cellular response to nitrosative stress 5 294 18 0.00e+00 0.00e+00
GO:0009267 cellular response to starvation 6 294 18 0.00e+00 0.00e+00
GO:0071456 cellular response to hypoxia 7 370 18 0.00e+00 0.00e+00
GO:0071732 cellular response to nitric oxide 7 369 18 0.00e+00 0.00e+00
GO:0006284 base-excision repair 8 361 18 0.00e+00 0.00e+00
GO:0006289 nucleotide-excision repair 8 361 18 0.00e+00 0.00e+00
GO:0006307 DNA dealkylation involved in DNA repair 9 424 18 0.00e+00 0.00e+00
GO:0052059 evasion or tolerance by symbiont of host- 11 319 18 1.63e-12 1.04e-10

produced reactive oxygen species
GO:0052060 evasion or tolerance by symbiont of host- 11 319 18 1.63e-12 1.04e-10

produced nitric oxide
GO:0051701 interaction with host 4 35 6 1.05e-07 6.74e-06

strongly on the similarity approach used. Here, again we see
that the GO-universal approach performs better than other
approaches, producing a clustering image which is consistent
with mapping between GO terms and identified proteins,
as indicated above. It is worth mentioning that two other
clustering approaches are implemented under the DaGO-Fun
tool, namely the graph spectral or kmeans clustering approach
and the community detecting model [44], which is referred
to as a model-based approach. For the kmeans clustering
approach, the user is required to provide the expected number
of clusters of his/her model. For these two approaches, results
are displayed in a table format in which each cluster is mapped
to its related proteins.

Finally, we ran GOSS-FEAT, taking as the target set a list
of 18 proteins annotated to GO:0051409 in order to identify
the most statistically relevant biological processes in which
these proteins are involved. We used the GO-universal metric,
Wang et al and Resnik approaches and results are shown in
Table 3. Once again, these results depend on the semantic
similarity measure used and looking at these results, only the
GO-universal approach was able to output the GO term used
to identify proteins used as the target set, namelyresponse to
nitrosative stressGO:0051409. This application suggests that
the GO-universal approach may constitute an effective solution
to the GO metric problem for the next generation of functional
similarity metrics [22].

B. Other GO semantic similarity tools and DaGO-Fun

As mentioned previously, there have been numerous tools
developed for producing GO term and protein semantic simi-

larity scores. These include web interfaces and software tools
very often implemented in the R programming language.
These tools, together with functional similarity measuresthey
support, are shown in Table 4. As pointed out previously, each
approach performs differently for different applications. For
example, the maximum approach achieves good performance
for prediction of protein-protein interactions compared to other
approaches [24]. The best-match average approaches perform
better in protein function prediction and validation [9], and
protein or gene clustering, while the average approach is
good for detecting similar protein sequences from their GO
annotations [1]. The existing tools allow researchers to browse
the specific approaches separately for their proteins of interest,
but an integrated tool for exploring all the IC-based similarity
approaches to allow researchers to choose the most relevant
approach for their applications did not exist previously. DaGO-
Fun solves this by allowing researchers to browse the inte-
grated set of all IC-based GO semantic similarity approaches.
The similarity scores produced are scaled (normalized) to
enable comparison between different approaches, and in the
future we will work on enabling multiple options to be run,
with a summary or merging of results where possible.

In terms of input size, the G-SESAME and FuSSiMeg web
tools accept only one pair of GO terms or proteins. The
ProteInOn tool may take up to 1000 GO terms or proteins
according to its authors, for which the tool outputs all pairs of
similarity scores, and the FunSimMat tool has unlimited input
size. We aim to let the DaGO-Fun tool calculate results for as
many user inputs as possible, however, because of limitations
in computational resources, we have to balance the maximum



TABLE IV: IC-based GO semantic similarity tools and func-
tional similarity measures (FSM) they support.

GO-Semantic Similarity features implemented
Tool Format Family Approach FSM

G-SESAME Web Topology-based Wang et al. ABM
Annotation-based Classical Resnik, Lin Average

and Jiang & Conrath

ProteInOn Web Annotation-based Classical Resnik, Lin BMA and
and Jiang & Conrath SimGIC
GraSM

FuSSiMeg Web Annotation-based Classical Resnik, Lin Max
and Jiang & Conrath
GraSM

FunSimMat Web Annotation-based Classical Resnik, Lin ABM
and Jiang & Conrath
SimRel (Enhancement)

SemSim R Topology-based Wang et al. Method ABM
Annotation-based Classical Resnik, Lin Average

and Jiang & Conrath
SimRel (Enhancement)

csbl.go R Annotation-based Classical Resnik, Lin SimGIC
and Jiang & Conrath average
GraSM and SimRel

number of GO terms, and GO term and protein pairs for each
user query. Thus, the DaGO-Fun tool accepts up to 5000 GO
terms when retrieving GO term IC scores, in which case the
tool will display only 10 of them per page, but all GO term
features can be retrieved by downloading them in a text file.
For GO term semantic similarity scores as well as for protein
functional similarity scores, the user can enter at most 3000
pairs. Entries beyond the maximum limitations will be ignored.
Unfortunately if you have cases where your data exceeds these
limitations, it is necessary to divide the input data, run the
DaGO-Fun tool separately, and merge the results at the end
of the process. Alternatively you can contact the authors who
are willing to collaborate and run large data sets for analysis.

III. C ONCLUSIONS

We have developed the DaGO-Fun tool, a customized web-
based GO semantic similarity resource. This user-friendly
online interface produces GO term information content (IC),
GO term semantic similarity and protein functional similarity
scores, which may assist experimental and computational
biologists in several applications involving protein analyses
at the functional level. These include gene list enrichment,
protein function prediction and comparison, clustering genes
or proteins based on their GO annotation information, and
ranking disease candidate proteins or identification of novel
disease candidate proteins. This tool will be updated quarterly
(every three months) using an automated scheme in order to
remain up to date to meet requirements of ever increasing
applications in the biomedical field. The DaGO-Fun tool is
freely available, meaning that one is free to copy, distribute,
display and make unrestricted non-commercial use of it under
the GNU General Public Licence provided that it is done with
appropriate citation of the tool and its components.

Despite the wide range of IC-based GO semantic similarity
applications and the existence of several approaches to meet
requirements of these applications, there was no tool available

that integrates all these IC-based approaches. Thus, researchers
had to implement these approaches themselves, use different
tools for different approaches, or download the individual
software packages, making extraction and comparison of these
scores difficult and time-consuming. The DaGO-Fun tool
overcomes these issues, providing easy retrieval of IC-based
GO term semantic similarity and protein functional similarity
scores within a large protein annotation dataset from GOA-
UniProtKB. It ensures that GO semantic similarity data are
conveniently accessible to researchers and can effectively
be used to investigate functional similarity between proteins
based on their GO annotations. In addition, we implemented
some biological applications of these semantic similaritymea-
sures, including protein classification and identificationbased
on their GO annotations, and term enrichment analysis.

Future work includes facilitating the search for functional
similarity between sets of GO terms. In this case, the user will
have to provide pairs of sets of GO terms using a specified key
linking the sets. This will undoubtedly improve the flexibility
of the DaGO-Fun tool, by allowing users to produce functional
similarity scores for their own predicted set of genes given
their GO annotations. We will assess the relevance of two
IC-term based functional similarity approaches introduced
here, namely SimDIC and SimUIC and evaluate the use
of annotation-based functional similarity approaches in the
context of the GO term IC topology-based family. Finally,
we will be expanding the DaGO-Fun tool to include some
other applications of GO semantic similarity in protein anal-
yses, such as protein function prediction, annotation system
comparisons, and disease protein prioritization.
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