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Abstract—The use of Gene Ontology (GO) data in protein Initially, path- or edge-based approaches, which use a dis-
analyses have largely contributed to the improved outcomes of tance or the number of edges between terms in the ontology

these analyses. Several GO semantic similarity measures ha"estructure were introduced [15], [16]. For these approsche
been proposed in recent years and provide tools that allow ' ' '

the integration of biological knowledge embedded in the GO the similarity score between two terms is proportional te th
structure into different biological analyses. There is a need for Number of edges on the shortest path between these two terms.
a unified tool that provides the scientific community with the Path-based approaches were criticized for being limited to
opportunity to explore these different GO similarity measure edge counting, ignoring positions of terms in the structure
approaches and their biological applications. We have developed and producing uniform similarity scores [9]. Thus, infotina

DaGO-Fun, an online tool available athttp://web. cbi o. . .
uct. ac. za/ | TGOM which incorporates many different GO content based approaches, which rely on a numerical value to

similarity measures for exploring, analyzing and comparing GO convey the description and specificity of a GO term using its
terms and proteins within the context of GO. It uses GO data position in the structure, were introduced [1]. This nuroalri

and UniProt proteins with their GO annotations as provided value is called information content (IC) or semantic vatamsg

by the Gene Ontology Annotation (GOA) project to precompute  jenanding on the conception of the term IC, these approaches

GO term information content (IC), enabling rapid response to divided into t in famili tation-based d
user gqueries. The DaGO-Fun online tool presents the advantage are divided Into two main families, annotation-based an

of integrating all the relevant IC-based GO similarity measures, topology-based families. Those depending only on therisiti
including topology- and annotation-based approaches to facilitate topology of the GO structure are referred to as topologyedas
effective exploration of these measures, thus enabling users togpproaches while those using the frequencies at which terms

choose the most relevant approach for their application. Further — oe0r i the corpus under consideration are referred to as
more, this tool includes several biological applications related to -
annotation-based approaches.

GO semantic similarity scores, including the retrieval of genes . .
based on their GO annotations, the clustering of functionally =~ Annotation-based approaches have been widely analyzed,
related genes within a set, and term enrichment analysis. deployed in many biological applications and were shown to
outperform path-based models [17]. Most of them are adapted
from Resnik [18], Lin [19] or Jiang & Conrath’s [20] methods,

During the last decade several Gene Ontology (GO) sgnd are referred to as classical IC-based similarity apes
mantic similarity approaches [1]-[10] have been introdliceThese classical approaches use the most informative common
for assessing the specificity of and relationship between Gfdcestor (MICA) between terms to assess their semantic
terms based on their position in the GO Directed Acycligimilarity. Beyond these classical approaches, sevenat ¢€-
Graph (DAG) [11]-{13]. Terms in the GO DAG are semanbased GO semantic similarity approaches and enhancements
tically and topologically linked by the relations ‘& and have been suggested in order to improve annotation-based
‘partof’, expressing relations between a given child term anfleasures. These include the graph-based similarity measur
its parents. Semantic similarity approaches are basedese th(GraSM), developed by Couto et al. [7], which uses all the dis
relations between terms and enable efficient exploitatibn @nctive common ancestors (DCA) instead of MICA, the rele-
the enormous corpus of biological knowledge embedded vance similarity approach proposed by Schlicker et al.44H
the GO DAG by comparing GO terms and proteins at th@e information coefficient idea of Li et al. [10] to corretiet
functional level. GO semantic similarity measures havenbegverestimation of similarity scores in Lin’s metric. Hovesy
widely used in different contexts of protein analysis, itthg the reliance of these approaches on the annotation statisti
gene clustering, gene expression data analysis, predlictisi the terms biases the scores produced [21]. Topologyebase
and validation of molecular interactions, and disease gefigproaches, including the GO-universal metric [22], arel th
prioritization [9], [14]. Zhang et al. [3] and Wang et al. [5] methods, were proposed
. , . _to remove the effect of annotation dependence.
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the continuous development of new high-throughput methodped, but to the best of our knowledge there is no single tool
the amount of functional data has increased dramaticalyi-j that exhaustively integrates the IC-based functional lanity
fying the development of dedicated methods and tools tHpt henetrics in order to provide researchers with the freedom to
extract information from these data. GO [11] has succdygsfuthoose the most relevant approach for their specific applica
provided a way of consistently describing genes and prsteitions. Here, this is solved through the DaGO-Fun online,tool
and a well adapted platform to computationally process atatawhich integrates up to 27 functional similarity measures, i
the functional level. Protein functional similarity mettoare cluding topology- and annotation-based approaches. Bbis t
counted among tools that allow integration of the biologicalso includes some important biological applications atlye
knowledge contained in the GO DAG, and have contributdithked to the use of GO semantic similarity measures, namely
to the improvement of biological analyses [17]. These pnotethe identification of genes based on their GO annotatioms, th
functional similarity measures have been used in sevedlistering of functionally related genes within a set, ard G
applications, including microarray data analysis [23htpin- term enrichment analysis.
protein interaction assessments [17], clustering andtiiden
fication of functional modules in protein-protein inteiaat
networks [24], and putative disease gene identificatiof. [25 The DaGO-Fun tool integrates GO IC-based semantic sim-
As well as different GO semantic similarities, several fundlarity measures, allowing researchers to explore and sf00
tional similarity approaches have been proposed. Some af appropriate measure for their analysis. The resulting GO
them depend directly on the GO term IC, referred to as Diresimilarity scores are retrieved from the DaGO-Fun database
Term- or graph-based approaches, and others are condtrugtglemented using MySQL and accessible via a web interface.
via computation of GO term semantic similarity measure$he whole system is implemented using a LAMP (Linux-
referred to as Term Semantic-based approaches. The fanmeripache-MySQL and PHP/Python) platform. This means that
cludes approaches derived from the Jaccard, Dice and uniwbe DaGO-Fun tool is implemented under free software (GNU
sal indices based on the Tversky ratio model of similari§][2 General Public Licence) using a Linux Apache server with a
referred to as SImGIC [8], [27], SImDIC and SimUIC [22], re-database structured in a relational model using MySQL, with
spectively. The latter approach includes the average (fMg) the web interface implemented in PHP-HTML.
best-match average (BMA) [8], [22], average best matchesThe back-end is composed of a set of query processing
(ABM) [5], [24], and the maximum (Max) [2] combinations of programs implemented in Python. The user input data are
GO term similarities for calculating protein functionafrsiar- GO terms or UniProt proteins [35]-[37] and their GO annota-
ities where proteins are annotated to multiple GO terms. Thens from the GOA project [38]-[41]. The database contains
recent proliferation of these measures in the biomedicdl aabout2 x 107 proteins with GO annotations ar3$ 877 GO
bioinformatics areas was accompanied by the developmentt@fms @5 178 biological process;]0426 molecular function
tools (ttp://wwv geneont ol ogy. org/ GO. tool s_ and 3273 cellular component terms) from the GO database.
by type.semantic_simlarity.shtm) that facil- The current version of DaGO-Fun uses UniProt and GOA-
tate effective exploration of these measures. UniProtkB release 2013-01 of Jan 9, 2013 and GO version
These tools include software packages and web-based &r8499 downloaded on 19-January-2013. The database will be
line tools. Most of the software packages are implemented updated using an automated scheme every three months.
the R programming language [28], [29], among which we have o
SemSim [30], GOSim [31], and csbl.go [23]. There are aldd C-based GO Semantic Similarity Measures
online tools, such as ProtelnOn [32] and G-SESAME [33]. We have implemented two main families of IC-based GO
In addition, an integrated online tool exists, the Collative semantic similarity measures: annotation and topologeta
Evaluation of Semantic Similarity Measures (CESSM) [34families. The annotation-based methods are constrained by
for automated evaluation of GO-based semantic similarithje annotation statistics related to terms, while topology
approaches, enabling the comparison of new measures agdiased measures use the intrinsic topology of the GO DAG.
previously published annotation-based GO similarity me# terms of GO term IC, the DaGO-Fun tool includes both
sures. Evaluation is done in terms of performance with reispéamilies and for the topology-based family, the tool imple-
to sequence, Pfam and EC similarity. Note that most of tmeents three approaches; Zhang et al. [3], Wang et al. [5]
online tools do not support topology-based approaches. Téred the GO-universal approach [22]. These topology-based
G-SESAME online tool, designed by Du et al. [33] in thdamily measures each has a specific scheme for computing GO
context of the Wang et al. approach, supports only classi¢aim semantic similarity and functional similarity scaré&e
Resnik [18], Jiang & Conrath [20], and Lin [19] similarity annotation-based family has been widely studied and severa
measures for protein or gene clustering applications. GO term semantic similarity and protein functional sinithar
The appropriate use of functional similarity measures dapproaches have been introduced.
pends on the applications [9], [24] since the measures parfo The GO term semantic similarity approaches include tra-
differently for different applications. A given measurencaditional Resnik and Lin measures and two approaches that
yield good performance for one application, but performsave been suggested to improve the performance of the Lin
poorly for another. Numerous online tools have been deveheasure, namely Relevance (SimRel) [4] and Information
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Coefficient (SimIC) [10] similarity measures. Note that iret which uses a universal index, given by the following formula
DaGO-Fun tool, the Jiang & Conrath similarity approach is

under the Lin approach label as it is just the non normalized 2 X Z 1C ()

distance derived from the Lin similarity measure. Furthemen SDIC () TEAFNAY ©)
all other normalization schemes that have been proposez hav Z IC (z) + Z IC (z)

failed to improve the performance of this approach [8]. For zEAX e AX

similarity measures which are not normalized or whose alue

do not range between 0 and 1, we have normalized them using Z IC (2)

the uniformized information content [8], [21], [24], to dila ) zEAXNAX

users to compare these data. A value close to one indicated™UIC (p,q) = (4)
high similarity and close to zero indicates low similarity max Z IC (z), Z IC (z)

between proteins at the functional level.

These annotation-based GO term similarity approaches are
combined using statistical measures of closeness, suchwaere AX is a set of GO terms together with their ancestors
average (Avg), maximum (Max), best-match average (BMA) X representing the ontology (MF, BP or CC) annotating a
and averaging all the best matches (ABM) for calculatingiven proteinr. Note that these two measures are still to be
protein functional similarity scores. The difference beém evaluated and compared to the existing functional sintylari
ABM and BMA approaches is subtle in their conception angheasures.
scores produced by these two approaches differ. The ABM [5],The DaGO-Fun tool implements 27 functional similarity
[24] for two annotated proteins is the mean of best matchewasures (see Table 1). Each of the four annotation-based GO
of GO terms of each protein against the other, given by tierm similarity approaches, namely Resnik, Lin, relevaaoe
following formula: Li et al., is implemented with four known IC-based non-direc

functional similarity measures (Avg, Max, BMA and ABM).
1 DaGO-Fun also includes the three IC-based direct term func-
ABM(pa)= - > ;2%358 (s + e S| tional similarity measures; SimGIC, SimDIC and SimUIC). It
tery e tery ot &) implements XGraSM (eXtended GraSM) in which, instead of
The Best Match Average (BMA) [8], [22] for two annotateolponsm|ering only the d_isj_unctive common ancestqrs (DCA), a
. . . ‘Is the case for the original GraSM, all informative common
proteinsp and ¢ is the mean of the following two values: . . L
ancestors (ICA) are considered when computing semantic sim
average of best matches of GO terms annotated to pmtﬁg}it between two different GO terms and the score between
p against those annotated to proteinand average of best Y d itself | t 1. This XGraSM h has b
matches of GO terms annotated to protgiragainst those ahterm an |tsef|s seh G ISSM a ﬁpg;oalc\:l aﬁ e:c_er:j
annotated to proteip, given by the following formula: Shown tq o_utpe_r orm the GraSM approach [21]. Note that find-
ing the disjunctive common ancestors (DCA) between two GO
1 (1 1 terms makes the original GraSM approach computationally
BMA(p,q)= = | — max S (s,t) + — max S (s, 1) unattractive. Unfortunately, this computational compiexs
2\n g > €T M et sET not proportional to the improvement in performance, and thu
(2) this approach is not included in the DaGO-Fun tool.
In equations (1) and (2)S (s,t) is the semantic similarity On the topology-based approaches, the DaGO-Fun tool
score between termsandt, 7.X is a set of GO terms ik  implements each approach with its associated functionait si
representing the molecular function (MF), biological pes larity measure as suggested by the authors of the approach
(BP) or cellular component (CC) ontology annotating a giveshown in Figure 1). Thus, the GO-universal approach is
proteinr andn = |T;X| andm = |T;*| are the number of GO implemented with the best match average (BMA) and the
terms in these sets. These two approaches produce diffehdfaing et al. approach uses the average best matches (ABM).
scores and they are equal only when= m, which is not For the Zhang et al. approach, the DaGO-Fun tool uses
often the case in a set of annotated genes or proteins. averaging best matches (ABM) as it has been shown to
A well known issue with all these statistical measures dafprove the performance of this approach [24]. The SimUI
closeness is that they are sensitive to scores that lie atafah approach refers to the union-intersection protein sintylar
distances from the majority of scores, or outliers. This mseameasure, which is also implemented in the GOstats package
that these measures may produce biases which affect prot#iBioconductor [31]. It is a particular case of SImGIC (usin
functional similarity scores [22]. The functional similgr the Jaccard index) which assumes that all GO terms occur at
approach, SImGIC [8], [27], which uses the IC of termequal frequency, in which case, only the topology of the GO
directly to compute protein functional similarity from ithe DAG is needed [22].
GO annotations, was introduced, and uses the Jaccard index. )
The DaGO-Fun tool also supports two other protein simifariS- Implementation of the DaGO-Fun tool
measures relying on GO term IC [22]: SimDIC (Czekanowski Protein annotations were retrieved from GOA-UniProtkB
or Lin like measure), which uses the Dice index, and SimUI@t htt p: / / www. ebi . ac. uk/ GOA using UniProt protein
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TABLE |: Different GO term semantic similarity approachesdafunctional similarity measures implemented in DaGO-Fun
The letter ‘X’ indicates that the relevant approach is impdated in DaGO-Fun with the corresponding functional sinty
measure.

Functional Similarity Measures

Direct Term-based Term Semantic-based
Approaches SImGIC  SimDIC  SmUIC SimUl BMA ABM Avg Max
Annotation-based X X X
XGraSM X X X X
Resnik X X X X
Lin X X X X
Li et al. X X X X
Relevance X X X X
Topology-based X
Zhang et al X
Wang et al. X
GO-universal X
IC-Based ’
‘ ‘ Term semantic similarity
Annotation—based I— Topology-based I
' {
Resnik-related I Lin—related I ReleLviu;cht’md I XGraSM | GO-Universal I Zhang et al. | Wang et al I
SimGIC SimDIC | SimUIC SimUl AVG | BMA ABM | MAX
. . . | |
| | ﬁ
Direct t;:ﬁl_ll;?lsfyd Functional Term Semgr;:;z;::ist;d Functional 4_

Protein Functional similarity

Fig. 1: Flowchart of all GO measures implemented in DaGO-Fun.The solid line indicates that the performance of a given
measure has already been assessed and the dashed linefetandasures or approaches that have to be evaluated.

accession (ID), gene name and description. GO term topoput options before submitting an application for proaegs
logical features (term parents and level) were extractethfr 1) Setting parameters stef:he DaGO-Fun tool provides a
the GO database. These data are integrated into a MyS€dmprehensive searching scheme. The user selects thetask t
database of biological concepts present in DaGO-Fun, apélprocessed, which includes the ontology (Biological Bss¢
used to produce GO term IC, GO term semantic similarity amdolecular Function or Cellular Component) under considera
protein functional similarity scores. The GO term IC scoregon, and chooses the GO semantic similarity measure family
are integrated into the precompiled dictionaries in the DaG (annotation or topology-based). After this, he/she caectel
Fun tool. The tool is based on a client-server model and dsie from a list of available models, which is restricted adeo
accessible dit t p: / / web. cbi 0. uct. ac. za/ | TGOMby ing to the selected family. Finally, some additional opti@re

any user with a standard web browser. The user interfaceavailable only when dealing with proteins, depending on the
DaGO-Fun allows easy and comprehensive navigation, queser’s choices. If the user selects the annotation-baseillyfa
and exploration of GO term, protein semantic similarityresp then more information is requested about the class (di@ct |
and includes biological applications, as shown in Figure 8r non direct IC) of the approach selected and how the IC or
This web interface allows the user to input queries in twormaGO term similarity scores should be combined. The engine
dynamic and customizable steps from the search to the uskanges further steps to guide the user’s choices by only



DaGO-Fun Database:

Annotation Scores Data Data Files Input

Protein Functional MySQL Protein < UniProt Protein Description
Similarity Table

|

| GO Term Semantic .
| i Ser DaGO-Fune—— Updated Data) GOA-UniProtKB
: Similarity System Files —\C P

f

MySQL GO-term e— Gene Ontology (GO)
Table
4 3
Logic System: u '

» Back-end Programs

GO Term Information
- Content (IC)

Query Processing) Results Trunsmission)

/

Front—end Programs [|=

H

User Interface:

GO terms and IC, and GO term or Protein-pairs and their semantic
similarity scores

IT-GOM: Integrative Tool for IC-Based GO Measures I
GOSP-FIT: GO Term Similarity based Protein-Fuzzy

—
Identitication Tool . ’

GOSP-FCT: GO-based Similarity Protein-Fuzzy
Classification Tool

Number of proteins for each GO terms and their statistics,
including average similarity scores and p-values

N RN

Different cll and protei ined in each cluster or
clustering image for hierachical clustering

Over-represented GO terms in the protein target set and

Enrichment Analysis Tool p-value of each term

N )
NN

GOSS-FEAT: GO Semantic Similarity based-Fuzzy I

User selected approach via web Results displayed in an appropriate
accessible interface format for visualization

Fig. 2: The DaGO-Fun system architecture.The user selects the application and enters the input (GQPd¢ein Accessions
or Gene names, GO Id pairs and protein or gene name pairs)adpieation is processed from the DaGO-Fun system and
results are displayed in a comprehensive format for vizatbn.

making available the options relevant to the current choice Fuzzy-Enrichment Analysis (GOSS-FEAT) and Protein Fuzzy-
. _ Classification (GOSP-FCT). Here, the fuzzy concept is eelat
2) User Input step:After selecting appropriate parametersyo the fact that the results or outputs of a given query are a

the user enters their queries in a text area or from a f”ﬁbnction of a certain agreement score or level.
and the size of the input allowed depends on the applications

Note that the DaGO-Fun tool currently includes four applica « For IT-GOM at http://web. cbi 0. uct. ac. za/
tions, namely: Term and protein semantic similarity measur | TGOM t ool s/ it gom php: up to 3000 pairs of GO
(IT-GOM), Protein Fuzzy-ldentification (GOSP-FIT), Term Ids, UniProt protein accessions or gene names can be



submitted for GO term similarity and functional similarityprotein subset is very small compared to the population size
guerying. For GO term IC, the user can enter up to 500thus, the p-value can also be approximated by or modeled
GO Ids. using the binomial distribution [42] by taking the relative
o A list of at most 20 GO Ids belonging to the samdrequency of occurrence of each GO term in the reference
GO ontology is recommended when using GOSRlataset as an estimator of the probabilityf observing the GO
FIT at http://web.cbio.uct.ac.za/l TGOM term under consideration. In this case, a gene taken at mando
t ool s/ gotspfit.php. from the reference dataset is an event with two possible
o For GOSS-FEAT athttp://web. cbhio.uct.ac. outcomes, namely success (1), if the gene is annotatedhvth t
zal | TGOM t ool s/ gossf eat . php: a target list of GO term, and failure (0) otherwise. Thus, the probability of
at most 2000 protein UniProt accessions or gene nanwsaining at least successes in trials or observing at leagt
is recommended. genes annotated with the GO term under consideration among
o Finally, a list of no more than 200 protein UniProtn genes in the target set is given by the following formula:
accessions or gene names is recommended for GOSP- ‘-1
FCT at http://web. cbio. uct.ac.za/ | TGOV P[ng]zl_z:(n)pk(l_p)n—k ©6)
t ool s/ gospf uct . php. = \k

These cut-offs are mainly due to the limitations of the compy, (hese cases, the lower the p-value, the less likely itdstte
tational resources available but also to the visualization- observed frequency of the term is due to chance, and thus the
straints and algorithm complexity, for example when rugning e meaningful the term is in the target gene set. Thus, GO

hierarchical c!ustering in GQSP'FCT' terms in the dataset under consideration can be ranked based
3) Outputs: Comprehensive summary reports generateq), ieir p-values using the fact that the lower the p-valbe, t

from the DaGO-Fun tool are made available in table format,, e significant the observed GO term is.

An example of a result report is shown in Figure 3 and \ e that as the biological applications implemented depen
this report can be downloaded as a tab-delimited text filf, e agreement level, the frequency of occurrence of a term
or printed. Users can query specmq links directly, Iead”_‘éﬁrough a gene or proteip s in fact fuzzy-frequency of this

to the reported GO terms or proteins. Note that proteiggy, modeled using GO similarity sco,, of the term to the

are linked FO their annot_ations via QuickGO at EBIt ¢ p: . set of GO terms annotating the gene, given by the following
'/ www. ebi . ac. uk/ Qui ck@0), and for GO term semantic ¢y ula:

similarity and information content queries, GO Ids are édk A, (1) =S (t TX) @)

to their characteristics and their sub-GO graphs displayed ¥ I

using AmiGO atht t p: // am go. geneont ol ogy. or g. TgX is a set of GO terms in the ontolog§¥ annotating the

A given concept (protein accession or GO Id) can also lyene g andS (t,7,") = max {S (t,s) : s € T, } [22], with

linked to more detailed results related to the concept. Mo&(¢, s) representing the semantic similarity score between GO

details on the use of the tool are provided in the help page tsimst¢ and s. We say the geneg is not annotated witlt or

the website. t does not occur through the gepdf A, (t) =0, g is fully

. annotated witht or ¢ fully occurs if A, (t) = 1 andg is fuzzy

C. GO term statistics annotated withy or ¢ fuzzy occurs ing(<) A, (t) < 1. Thus,
The DaGO-Fun tool uses binomial test for the retrieval @he fuzzy occurrence of a given term induces the possibility

genes based of their GO annotations (GOSP-FIT) and hypef-a term occurrence through a given protein in the annatatio

geometric test for term enrichment analysis (GOSS-FEATgata under consideration. Specifically, the fuzzy frequesfc

adjusted using the Bonferroni multiple testing correctidote occurrence of the GO termin a set of gene€ from a given

that using the hyper-geometric distribution, the p-valubich  experiment, denoted f (t), is calculated using the following
is the probability of observing at leaétgenes from a target formula:

gene set of sizex by chance, knowing that the reference FE®) = 6,() (8)
dataset, considered as a background distribution, cantain yec
such an.notated genes out of N genes is given by the fO”OW'\r/]\%erezsg is the g—function indicator given by
formula:
m\ (N —m 1 if A, (t)>¢c
S\ \n—k % (1) = 0 otherwise
P[Xzé]:1—2# (5)
k=0 ( ) ¢ > 0 is the agreement level or customized agreement at which
n

the GO termt is considered to be a possible annotation of the
The random variable X represents the number of genes witlgjaneg. The value ot: = 0.3 is considered to be a default value
a given target gene subset, annotated with a given GO tewhthe agreement level, and its associated fuzzy frequescy i
Note that we are dealing with very large population sizeeferred to as realistic or moderate frequency. This isngtro
(organism’s genome, proteome or set of annotated proteorshigh frequency ifc = 0.7 and perfect frequency if = 1,

in the GOA file), in which case the size of the target gene @rhich corresponds to the traditional approaches.



C B I O DaGO-Fun - Database for GO-based Functional C B I O DaGO-Fun - Database for GO-based Functional

Compuitational Blology @ UGT Annotation Analysis Computational Biology @ UGT Annotation Analysis

3 Py ——— Computing Protein Semantic or Functional Similarity Scores
IT-GOM: Integrated Tool for IC-based GO Semantic Similarity Measures . © N
Semantic Similarity (SS) scorse for 20 existing protein or gene paire annotated with Biological Procees (P) terme in the

This engine provides the information content (IC) of GO terms, semantic similarity between GO terms and GO-based protein functional similarity | | current setting among 20 protein pairs in the list provided, which are computed using GO-Universal metric [Topology-
scores. The specificity of GO terms and the similarity of biological content between GO terms or proteins are transformed info numeric values for | | paged] considering [EA GO evidence code in these protein or gene annotations, are shown in Table below:

protein analyses at the functional level. This enables protein comparisons based on their biclogical roles and renders possible efficient exploitation of

biological knowledge embedded in the GO DAG. These semantic similarity approaches have now been deployed in the GO enrichment (G0 SS-FEAT)
gene search (GOTSF-FIT), functional classification (GOSP-FuCT) and annotation prediction tools. Protein-Accl Protein-AcC2 Score

IC-based GO Measures O qune Qans 0.91398

Search Tool Category Options: Input c
gory O quke Qo081 0.59802

e SR [ e :
[ Protein semantic simi 3 | | | (Topology-based 3] | |[uniprot acc: 2] |[ors254 F1s730 © qane @B CHEREER

QotRs3  gsvoLO ,
QoNR63 043174 O qomo P11511 0.32966

=1 QonRe3 064505

™ include IEA QSNRE3 PO018E O aake P27786 0.18620
Ontology From File O qaKe POO184 0.18421

Biological Process | & niversal 2 =
g ]| |(cou ] z g O quks 043174 0.26987
O s Poo18s 0.3433
O qake Q6VOLO 0.27360

Descriptio 2
« Step 1 Calculating allows you to select the nature of scores you want to compute. In step 2 Tool Category you select which family of tools O qaKe QINRE3 0.21512
you want to run and one of several approaches. Step 3 Options allows you to choose the way you want your protein pair scores to be

* The Ontology in Step 1 allows you to select the GO ontology: BP, MF or CC.
« Your query calls topology-based GO-Universal protein functional similarity and returns the scores of all protein pairs entered.

You can select a concept of interest and click an continue to display their functional features or click here to download the
table above for all term pairs in a space-tab txt file.

Fig. 3: Application example of querying IT-GOM and an output summary. The left figure shows the DaGO-Fun interface
providing the query form with user input data and the figuratmright displays the results table of protein similaricpies
produced by the selected algorithm.

TABLE II: Results obtained after running the GOSP-FIT foesific GO Ids and using different GO term semantic similarity
approaches, namely GO-universal (GA), Wang et al (WA), ghanal. (ZA), Resnik (RA), Lin (LA) and Li et al. (LLA).

Number of proteins detected

GO ID Level GO Name GA WA ZA RA LA LLA p-value Corrected p-value
G0:0044255 4 cellular lipid metabolic process 154 1590 190725 2 1652 1286 0.00e+00 0.00e+00
GO0:0071236 6 cellular response to antibiotic 123 307 545 27739 588 2.42e-14 9.68e-14
G0:0051409 3 response to nitrosative stress 91 226 426 2435 43418 1.07e-14 4.26e-14
G0:0052099 6 acquisition by symbiont of nutrients 47 128 463 2418 269 2.75e-14 1.10e-13

from host via siderophores

II. RESULTS AND DISCUSSION different biological applications in the DaGO-Fun tool at

moderate agreement, unless otherwise stated.
In this section we provide and discuss briefly some il-

lustrations of biological applications included in the Dag A- Performing DaGO-Fun applications

Fun tool, namely GO Term Similarity based Protein-Fuzzy Using the biological process terms listed above, we ran
Identification Tool (GOSP-FIT), GO based Similarity Pratei GOSP-FIT to identify proteins involved in a process simitar
Fuzzy Classification Tool (GOSP-FCT) and GO Semantibe input processes, using the GO-universal metric, Wang et
Similarity based-Fuzzy Enrichment Analysis Tool (GOSSal., Zhang et al, Resnik, Lin and Lin with Li et al. enhancemen
FEAT). We ran these applications on thycobacterium similarity measures. Results are shown in Table 2. We see
tuberculosis (MTB) genome using different GO semantidhat, except for GO-universal and Resnik approaches, other
similarity approaches and analyzed the results obtainddB M approaches tend to select more proteins for a given term.
is an intracellular pathogen that causes tuberculosis ,(TBhis is an indication that these approaches are overegtignat
one of the most threatening infectious diseases consgleri@O term similarity scores. It is already known that the Lin
the severity of its impact on human populations [43]. To bapproach overestimates similarity scores between tertishw
successful, MTB must, at each step of the infection, expaiesss why the enhancement of this measure has been suggested
set of genes that enables it to survive and persist insidoiis through the information coefficient idea of Li et al. [10] and
macrophages, defeating antibacterial mechanisms of lkdst cthe relevance similarity approach proposed by Schlicker et
and evading the antibiotic actions of drugs. Thus, it isdv&d al. [4] to correct these overestimated scores. From the eumb
that besides some basic biological processes, these genesf@roteins detected by Lin and its enhancement proposed
proteins must be involved in critical biological processedy Li et al., we observe that this enhancement is trying
such asresponse to nitrosative stre$60:0051409)cellular to reduce the impact of Lin similarity score overestimation
response to antibioti¢€GO:0071236)acquisition by symbiont even though overall these measures are still overestigatin
of nutrients from host via siderophorés0:0052099)cellular  similarity scores. Finally, note that one can display atitpins

lipid metabolic proces$G0:0044255), etc. We used these G@entified for a given term by selecting the row of the term
biological process terms as initial data or input for ruigninand clicking on the ‘Continue’ button.



Before running other applications, we first identified ilPOA5B7, P71971) for GO:00051409, one protein (P65720)
the MTB genome all genes or proteins involved in the G@r GO:0071236, 2 (P65734, 053207) for GO:0044255, and 2
annotations under consideration. A total of 23 proteinseha(P63391, P63393) for GO:0052099. We used these proteins as
been identified with 18 proteins (053594, P66807, POA69®put data for running GOSP-FCT using hierarchical cluster
POA5L0, Q10630, P72001, P96853, 006239, P65688, P649dAder the customized agreement level. Results are depicted
050429, P66952, P63345, P96237, P67422, Q7BHK8, Figure 4 and indicate that the clustering outcome depends
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(a) Using GO-universal approach. (b) Using Wang et al. approach.
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(c) Using Resnik approach. (d) Using Li et al. approach.

Fig. 4: Clustering results obtained by running the hierarchical clustering program using different similarity metrics
under the DaGO-Fun tool. Protein label is colored according to the process in whiehgtotein is involved. Magenta for
proteins involved in GO:00051409, blue for GO:0071236egréor GO:0044255 and red for GO:0052099.



TABLE Ill: Running the GOSS-FEAT for specific GO Ids and usidifferent GO term semantic similarity approaches.

Approach GO-ID GO Name Level Reference Fuzzy Target Fuzzy alpev  Corrected
Frequency Frequency p-value
GO-Universal GO:0051409 response to nitrosative stress 3 1 9 0.00e+00  0.00e+00
G0:0006979  response to oxidative stress 3 90 18 8.08e-13 7e41
G0:0052572  response to host immune response 92 8 1.16e-07 5e-064
Wang et al. GO0:0006979  response to oxidative stress 3 226 18 .00e€00 0.00e+00
GO0:0046677 response to antibiotic 4 164 18 0.00e+00  0.0De+0
G0:0001666 response to hypoxia 5 163 18 0.00e+00  0.00e+00
G0:0006974 response to DNA damage stimulus 5 419 18 0.00e+0@0eMO
GO0:0009432  SOS response 5 316 18 0.00e+00  0.00e+00
G0:0034605 cellular response to heat 5 351 18 0.00e+00 €000e
GO0:0071500 cellular response to nitrosative stress 5 365 18 0.00e+00 0.00e+00
G0:0075136 response to host 5 293 12 9.10e-08 5.82e-06
Resnik G0:0009432  SOS response 5 294 18 0.00e+00  0.00e+00
G0:0034605 cellular response to heat 5 296 18 0.00e+00  €000e
GO0:0071500 cellular response to nitrosative stress 5 294 18 0.00e+00 0.00e+00
G0:0009267  cellular response to starvation 6 294 18 0.0De+®.00e+00
G0:0071456  cellular response to hypoxia 7 370 18 0.00e+0000e8:00
G0:0071732  cellular response to nitric oxide 7 369 18 0.00e+ 0.00e+00
G0:0006284  base-excision repair 8 361 18 0.00e+00  0.00e+00
G0:0006289 nucleotide-excision repair 8 361 18 0.00e+00 006300
G0:0006307 DNA dealkylation involved in DNA repair 9 424 18 .00e+00  0.00e+00
G0:0052059 evasion or tolerance by symbiont of host- 11 319 18 1.63e-12 1.04e-10
produced reactive oxygen species
G0:0052060 evasion or tolerance by symbiont of host- 11 319 18 1.63e-12 1.04e-10
produced nitric oxide
GO0:0051701 interaction with host 4 35 6 1.05e-07 6.74e-06

strongly on the similarity approach used. Here, again we skeeity scores. These include web interfaces and softwanks to
that the GO-universal approach performs better than othary often implemented in the R programming language.
approaches, producing a clustering image which is comgistdhese tools, together with functional similarity measutresy
with mapping between GO terms and identified proteinsupport, are shown in Table 4. As pointed out previouslyheac
as indicated above. It is worth mentioning that two othepproach performs differently for different applicatior
clustering approaches are implemented under the DaGO-Fexample, the maximum approach achieves good performance
tool, namely the graph spectral or kmeans clustering agprodor prediction of protein-protein interactions comparedther
and the community detecting model [44], which is referredpproaches [24]. The best-match average approachesrmerfor
to as a model-based approach. For the kmeans clusterirgter in protein function prediction and validation [9hda
approach, the user is required to provide the expected numpeotein or gene clustering, while the average approach is
of clusters of his/her model. For these two approachesitsesgood for detecting similar protein sequences from their GO
are displayed in a table format in which each cluster is mdppannotations [1]. The existing tools allow researchers tmise
to its related proteins. the specific approaches separately for their proteins efést,
Finally, we ran GOSS-FEAT, taking as the target set a libut an integrated tool for exploring all the IC-based sinitya
of 18 proteins annotated to GO:0051409 in order to identifjpproaches to allow researchers to choose the most relevant
the most statistically relevant biological processes irictvh approach for their applications did not exist previouslg@D-
these proteins are involved. We used the GO-universal opetfrun solves this by allowing researchers to browse the inte-
Wang et al and Resnik approaches and results are showrgiated set of all IC-based GO semantic similarity approsche
Table 3. Once again, these results depend on the semamtie similarity scores produced are scaled (normalized) to
similarity measure used and looking at these results, drdy tenable comparison between different approaches, and in the
GO-universal approach was able to output the GO term usiedure we will work on enabling multiple options to be run,
to identify proteins used as the target set, namesponse to with a summary or merging of results where possible.
nitrosative stres$50:0051409. This application suggests that In terms of input size, the G-SESAME and FuSSiMeg web
the GO-universal approach may constitute an effectivetisolu tools accept only one pair of GO terms or proteins. The
to the GO metric problem for the next generation of function®rotelnOn tool may take up to 1000 GO terms or proteins
similarity metrics [22]. according to its authors, for which the tool outputs all paif
o similarity scores, and the FunSimMat tool has unlimiteduinp
B. Other GO semantic similarity tools and DaGO-Fun size. We aim to let the DaGO-Fun tool calculate results for as
As mentioned previously, there have been numerous tool&ny user inputs as possible, however, because of limiatio
developed for producing GO term and protein semantic sinmiit computational resources, we have to balance the maximum



TABLE IV: IC-based GO semantic similarity tools and funcyy5¢ integrates all these IC-based approaches. Thuscases

tional similarity measures (FSM) they support. had to implement these approaches themselves, use differen
GO-Semantic Similarity features implemented tools for different apprc_)aches, or download the_ individual
Tool Format ~— Family Approach FSM software packages, making extraction and comparison eéthe
G-SESAME ~ Web  Topology-based ~ Wangetal. ABM scores difficult and time-consuming. The DaGO-Fun tool
Annotation-based  Classical Resnik, Lin Average . .y .
and Jiang & Conrath overcomes these issues, providing easy retrieval of 1@ébas

ProtelnOn Web Annotation-based  Classical Resnik, Lin ~ BMW a GO term semantic Sim”arity and protein functional Sifﬁtbaf
and Jiang & Conrath  SimGIC scores within a large protein annotation dataset from GOA-

GraSM . . . .
. - . —— UniProtKB. It ensures that GO semantic similarity data are
FuSSiMeg Web Annotation-based  Classical Resnik, Lin Max . . .
and Jiang & Conrath conveniently accessible to researchers and can effgctivel
Grasm be used to investigate functional similarity between pnste
FunSimMat  Web  Annotation-based angf};f"gaé%%iﬁ'aﬁh“” ABM based on their GO annotations. In addition, we implemented
SimRel (Enhancement) some biological applications of these semantic similariga-
Semsim R Topology-based ~ Wang et al. Method ABM sures, including protein classification and identificatimsed
Annotation-based aﬂiﬁ;‘{fg‘ﬁgﬂ%ﬁ'” Average  on their GO annotations, and term enrichment analysis.
SimRel (Enhancement) Future work includes facilitating the search for functibna
csbl.go R Annotation-based  Classical Resnik, Lin ~ SimGIC  sjmilarity between sets of GO terms. In this case, the uskr wi
and Jiang & Conrath average . . . ipe
GraSM and SimRel have to provide pairs of sets of GO terms using a specified key

linking the sets. This will undoubtedly improve the flexityil

of the DaGO-Fun tool, by allowing users to produce functiona
number of GO terms, and GO term and protein pairs for eagfiilarity scores for their own predicted set of genes given
user query. Thus, the DaGO-Fun tool accepts up to 5000 dfmir GO annotations. We will assess the relevance of two
terms when retrieving GO term IC scores, in which case the-term based functional similarity approaches introdlice
tool will display only 10 of them per page, but all GO termhere, namely SimDIC and SimUIC and evaluate the use
features can be retrieved by downloading them in a text filef annotation-based functional similarity approaches hia t
For GO term semantic similarity scores as well as for protefiontext of the GO term IC topology-based family. Finally,
functional similarity scores, the user can enter at most030@e will be expanding the DaGO-Fun tool to include some
pairs. Entries beyond the maximum limitations will be igedr other applications of GO semantic similarity in protein lana
Unfortunately if you have cases where your data exceeds thg§es, such as protein function prediction, annotationesyst
limitations, it is necessary to divide the input data, rue thcomparisons, and disease protein prioritization.

DaGO-Fun tool separa’;ely, and merge the results at the e fiict of interest statemenilone declared.

of the process. Alternatively you can contact the authore wh

are willing to collaborate and run large data sets for anmglys
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